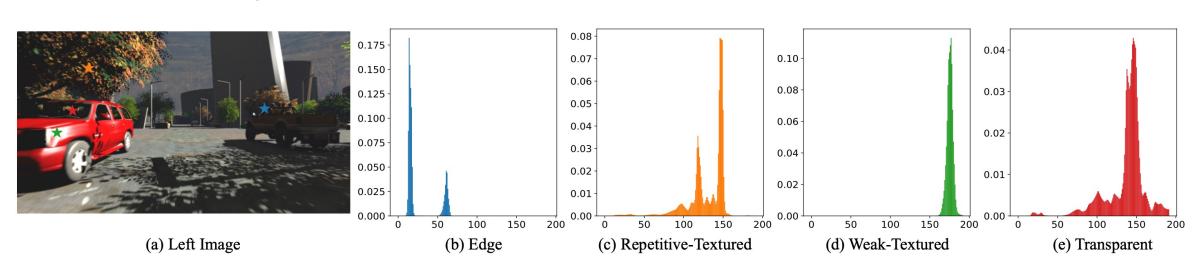


MIDAS: Modeling Ground-Truth Distributions with Dark Knowledge for Domain Generalized Stereo Matching

Peng Xu Zhiyu Xiang Jingyun Fu Tianyu Pu Hanzhi Zhong Eryun Liu Zhejiang University

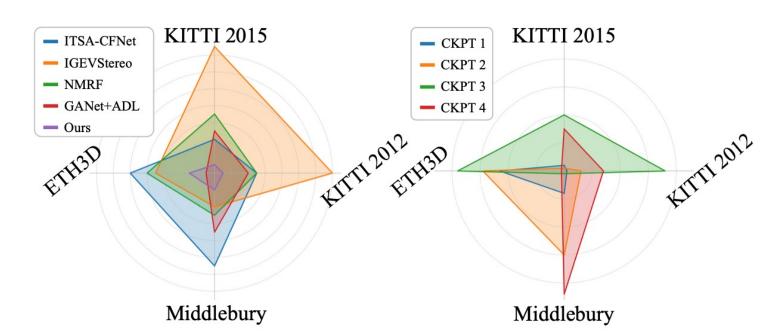
(1) Motivation

- Previous work modeled multi-modal ground truth for edge pixels with matching ambiguity.
- An elegant way to simultaneously model multi-modal distributions for other ambiguous regions, such as repetitive textures and transparency, is still missing.
- > Stereo networks can **spontaneously** learn and output multi-modal distributions, implicitly capturing **similarity and uncertainty**.

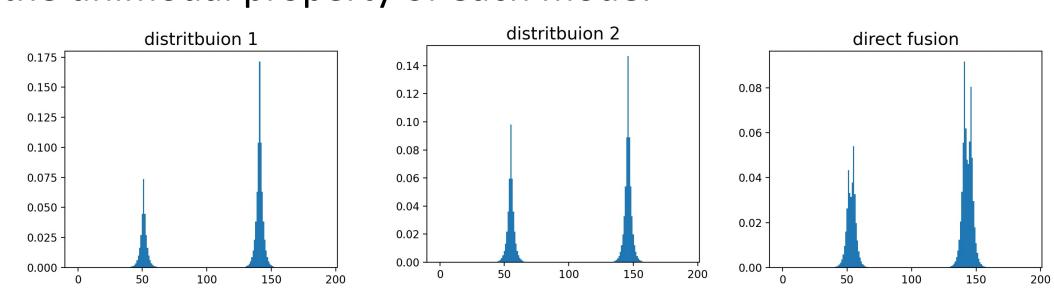


(2) Challenges

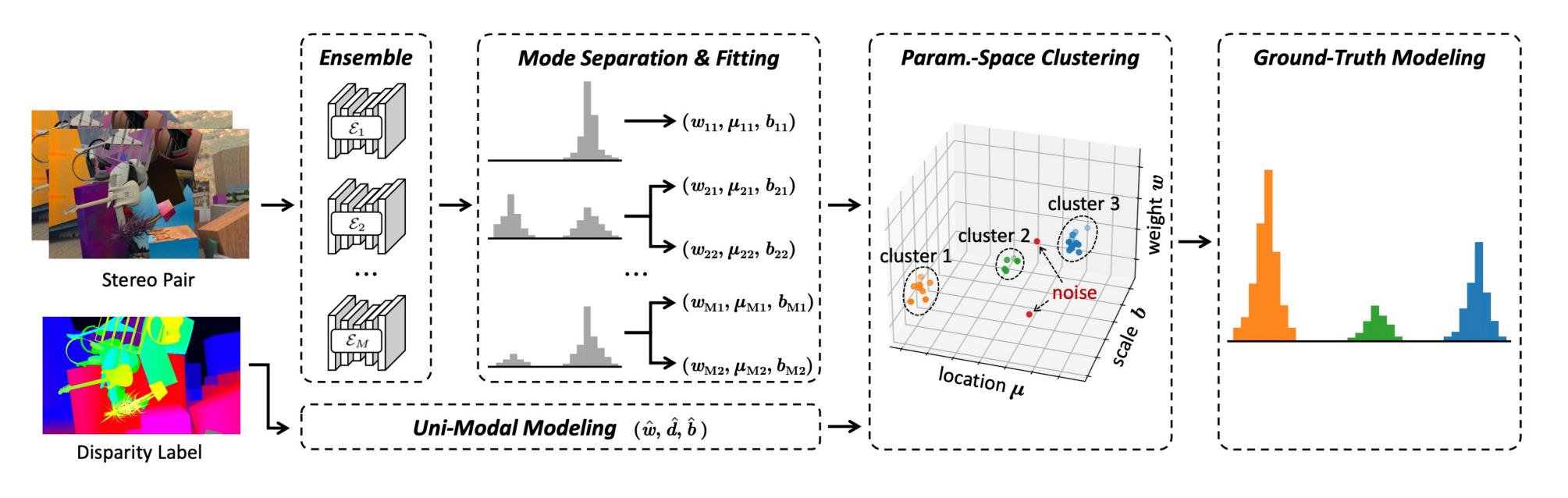
Cross-domain preferences of different network architectures (left) and different checkpoints of the same network (right).



> Directly fusing the outputs of the network ensemble can disrupt the unimodal property of each mode.

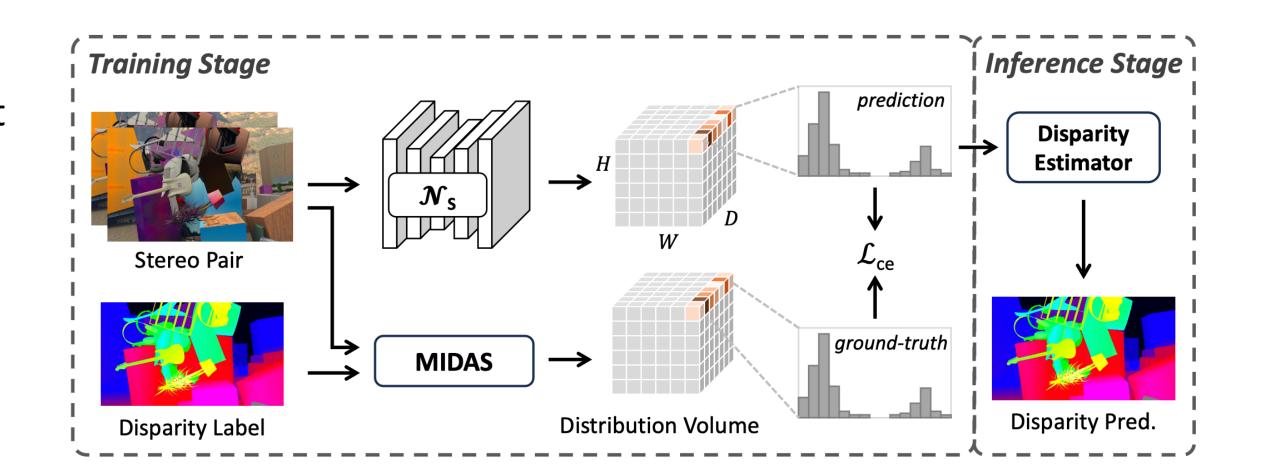


(3) Ground-truth Distribution Modeling



- \succ For each pixel, the network ensemble predicts M multi-modal probability distributions.
- \succ Individual modes are separated from these distributions and fitted as **parameterized Laplacians** (w, μ , b).
- \succ The disparity label is also modeled as the uni-modal Laplacian with coordinate $(\widehat{w}, \widehat{d}, \widehat{b})$.
- > We cluster the points in the parameter space to distinguish the **objective knowledge** (effective clusters) from the **biased knowledge** (noise).
- > The elements within each cluster are **fused** and **re-modeled** as a formulated mode in the final ground-truth distribution.

4 Overall Pipeline



(5) Ablations

#Arch.	#CKPT	KT15	KT12	MB	ETH3D
0	0	4.73	4.64	9.76	4.18
1	1	4.67	4.41	9.00	4.02
1	2	4.57	3.87	8.47	3.34
2	1	4.64	3.89	8.27	3.64
2	2	4.59	3.82	8.01	3.40
3	3	4.49	3.72	7.95	3.17

Method	KT15 KT12		MB	ETH3D
PSMNet [2] + Ours	4.49	3.72	7.95	3.17
w/o BKF	4.57	3.81	8.47	3.40

6 Quantitative Results

Our method significantly enhances the backbone's performance and surpasses previous state-of-the-art methods.

Method	Publication	KITTI 2015 >3px	KITTI 2012 >3px	Middlebury >2px	ETH3D >1px	Mean Rank
PSMNet [2]	CVPR 2018	16.30 ¹⁸	15.10 ¹⁸	25.10 ¹⁸	23.80 ¹⁸	18.00
GwcNet [15]	CVPR 2018	12.80^{17}	11.70^{17}	18.10 ¹⁶	9.00^{16}	16.50
GANet [47]	CVPR 2019	11.70^{16}	10.10^{16}	20.30^{17}	14.10 ¹⁷	16.5
DSMNet [48]	ECCV 2020	6.50^{15}	6.20^{15}	13.80 ¹³	6.20^{14}	14.25
CFNet [33]	CVPR 2021	5.80^{12}	4.70^{11}	15.30 ¹⁴	5.80^{12}	12.25
Mask-CFNet [30]	CVPR 2023	5.80^{12}	4.80^{12}	13.70^{12}	5.70^{11}	11.75
Raft-Stereo [24]	3DV 2021	5.70^{11}	5.20^{14}	12.60^{11}	3.30 ⁶	10.50
FC-GANet [50]	CVPR 2022	5.30 ⁹	4.60^{10}	10.20 ⁹	5.80^{12}	10.00
PCWNet [34]	ECCV 2022	5.60^{10}	4.20 ⁵	15.77 ¹⁵	5.20^{10}	10.00
IGEV-Stereo [40]	CVPR 2023	6.03^{14}	5.18 ¹³	7.27 ³	3.60 ⁷	9.25
Graft-GANet [25]	CVPR 2022	4.90 ⁶	4.20 ⁵	9.80 ⁸	6.20^{14}	8.25
ITSA-CFNet [9]	CVPR 2022	4.70 ⁴	4.20 ⁵	10.40^{10}	5.10 ⁹	7.00
StereoRisk [26]	ICML 2024	5.19 ⁸	4.43 ⁹	9.32^{7}	2.41 ²	6.50
NMRF [14]	CVPR 2024	5.10 ⁷	4.20 ⁵	7.50^{4}	3.80 ⁸	6.00
GANet + ADL [41]	CVPR 2024	4.84 ⁵	3.93 ⁴	8.72 ⁶	2.31 ¹	4.00
PSMNet + Ours		4.49 ³	3.72 ²	7.95 ⁵	3.17 ⁵	3.75
GwcNet + Ours		4.16 ²	3.74 ³	7.23 ²	2.91 ⁴	2.75
PCWNet + Ours		3.96 ¹	3.57 ¹	7.20 ¹	2.72 ³	1.50

(7) Qualitative Results

Our method demonstrates excellent reliability on weak textures, repetitive textures, object edges, and strong glare.

